Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modeling Assumptions Clash with the Real World: Transparency, Equity, and Community Challenges for Student Assignment Algorithms (2101.10367v1)

Published 25 Jan 2021 in cs.HC, cs.CY, and cs.GT

Abstract: Across the United States, a growing number of school districts are turning to matching algorithms to assign students to public schools. The designers of these algorithms aimed to promote values such as transparency, equity, and community in the process. However, school districts have encountered practical challenges in their deployment. In fact, San Francisco Unified School District voted to stop using and completely redesign their student assignment algorithm because it was not promoting educational equity in practice. We analyze this system using a Value Sensitive Design approach and find that one reason values are not met in practice is that the system relies on modeling assumptions about families' priorities, constraints, and goals that clash with the real world. These assumptions overlook the complex barriers to ideal participation that many families face, particularly because of socioeconomic inequalities. We argue that direct, ongoing engagement with stakeholders is central to aligning algorithmic values with real world conditions. In doing so we must broaden how we evaluate algorithms while recognizing the limitations of purely algorithmic solutions in addressing complex socio-political problems.

Citations (56)

Summary

We haven't generated a summary for this paper yet.