Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Novel Dynamic Load Balancing Algorithm for Cloud-Based Big Data Analytics (2101.10209v2)

Published 25 Jan 2021 in cs.DC

Abstract: Big data analytics in cloud environments introduces challenges such as real-time load balancing besides security, privacy, and energy efficiency. In this paper, we propose a novel load balancing algorithm in cloud environments that performs resource allocation and task scheduling efficiently. The proposed load balancer reduces the execution response time in big data applications performed on clouds. Scheduling, in general, is an NP-hard problem. In our proposed algorithm, we provide solutions to reduce the search area that leads to reduced complexity of the load balancing. We recommend two mathematical optimization models to perform dynamic resource allocation to virtual machines and task scheduling. The provided solution is based on the hill-climbing algorithm to minimize response time. We evaluate the performance of proposed algorithms in terms of response time, turnaround time, throughput metrics, and request distribution with some of the existing algorithms that show significant improvements

Citations (12)

Summary

We haven't generated a summary for this paper yet.