Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Evaluating Models of Robust Word Recognition with Serial Reproduction (2101.09788v1)

Published 24 Jan 2021 in cs.CL

Abstract: Spoken communication occurs in a "noisy channel" characterized by high levels of environmental noise, variability within and between speakers, and lexical and syntactic ambiguity. Given these properties of the received linguistic input, robust spoken word recognition -- and language processing more generally -- relies heavily on listeners' prior knowledge to evaluate whether candidate interpretations of that input are more or less likely. Here we compare several broad-coverage probabilistic generative LLMs in their ability to capture human linguistic expectations. Serial reproduction, an experimental paradigm where spoken utterances are reproduced by successive participants similar to the children's game of "Telephone," is used to elicit a sample that reflects the linguistic expectations of English-speaking adults. When we evaluate a suite of probabilistic generative LLMs against the yielded chains of utterances, we find that those models that make use of abstract representations of preceding linguistic context (i.e., phrase structure) best predict the changes made by people in the course of serial reproduction. A logistic regression model predicting which words in an utterance are most likely to be lost or changed in the course of spoken transmission corroborates this result. We interpret these findings in light of research highlighting the interaction of memory-based constraints and representations in language processing.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Stephan C. Meylan (5 papers)
  2. Sathvik Nair (5 papers)
  3. Thomas L. Griffiths (150 papers)
Citations (4)

Summary

We haven't generated a summary for this paper yet.