Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Removal Lemma for Ordered Hypergraphs (2101.09769v1)

Published 24 Jan 2021 in math.CO and math.LO

Abstract: We prove a removal lemma for induced ordered hypergraphs, simultaneously generalizing Alon--Ben-Eliezer--Fischer's removal lemma for ordered graphs and the induced hypergraph removal lemma. That is, we show that if an ordered hypergraph $(V,G,<)$ has few induced copies of a small ordered hypergraph $(W,H,\prec)$ then there is a small modification $G'$ so that $(V,G',<)$ has no induced copies of $(W,H,\prec)$. (Note that we do \emph{not} need to modify the ordering $<$.) We give our proof in the setting of an ultraproduct (that is, a Keisler graded probability space), where we can give an abstract formulation of hypergraph removal in terms of sequences of $\sigma$-algebras. We then show that ordered hypergraphs can be viewed as hypergraphs where we view the intervals as an additional notion of a ``very structured'' set. Along the way we give an explicit construction of the bijection between the ultraproduct limit object and the corresponding hyerpgraphon.

Summary

We haven't generated a summary for this paper yet.