Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Learning Setup Policies: Reliable Transition Between Locomotion Behaviours (2101.09391v2)

Published 23 Jan 2021 in cs.RO, cs.AI, and cs.LG

Abstract: Dynamic platforms that operate over many unique terrain conditions typically require many behaviours. To transition safely, there must be an overlap of states between adjacent controllers. We develop a novel method for training setup policies that bridge the trajectories between pre-trained Deep Reinforcement Learning (DRL) policies. We demonstrate our method with a simulated biped traversing a difficult jump terrain, where a single policy fails to learn the task, and switching between pre-trained policies without setup policies also fails. We perform an ablation of key components of our system, and show that our method outperforms others that learn transition policies. We demonstrate our method with several difficult and diverse terrain types, and show that we can use setup policies as part of a modular control suite to successfully traverse a sequence of complex terrains. We show that using setup policies improves the success rate for traversing a single difficult jump terrain (from 51.3% success rate with the best comparative method to 82.2%), and traversing a random sequence of difficult obstacles (from 1.9% without setup policies to 71.2%).

Citations (4)

Summary

We haven't generated a summary for this paper yet.