Semi-discrete and fully discrete mixed finite element methods for Maxwell viscoelastic model of wave propagation
Abstract: Semi-discrete and fully discrete mixed finite element methods are considered for Maxwell-model-based problems of wave propagation in linear viscoelastic solid. This mixed finite element framework allows the use of a large class of existing mixed conforming finite elements for elasticity in the spatial discretization. In the fully discrete scheme, a Crank-Nicolson scheme is adopted for the approximation of the temporal derivatives of stress and velocity variables. Error estimates of the semi-discrete and fully discrete schemes, as well as an unconditional stability result for the fully discrete scheme, are derived. Numerical experiments are provided to verify the theoretical results.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.