Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Unsupervised Pixel-wise Hyperspectral Anomaly Detection via Autoencoding Adversarial Networks (2101.08827v1)

Published 21 Jan 2021 in eess.IV

Abstract: We propose a completely unsupervised pixel-wise anomaly detection method for hyperspectral images. The proposed method consists of three steps called data preparation, reconstruction, and detection. In the data preparation step, we apply a background purification to train the deep network in an unsupervised manner. In the reconstruction step, we propose to use three different deep autoencoding adversarial network (AEAN) models including 1D-AEAN, 2D-AEAN, and 3D-AEAN which are developed for working on spectral, spatial, and joint spectral-spatial domains, respectively. The goal of the AEAN models is to generate synthesized hyperspectral images (HSIs) which are close to real ones. A reconstruction error map (REM) is calculated between the original and the synthesized image pixels. In the detection step, we propose to use a WRX-based detector in which the pixel weights are obtained according to REM. We compare our proposed method with the classical RX, WRX, support vector data description-based (SVDD), collaborative representation-based detector (CRD), adaptive weight deep belief network (AW-DBN) detector and deep autoencoder anomaly detection (DAEAD) method on real hyperspectral datasets. The experimental results show that the proposed approach outperforms other detectors in the benchmark.

Citations (27)

Summary

We haven't generated a summary for this paper yet.