Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Enabling Large Neural Networks on Tiny Microcontrollers with Swapping (2101.08744v3)

Published 14 Jan 2021 in cs.AR and cs.OS

Abstract: Running neural networks (NNs) on microcontroller units (MCUs) is becoming increasingly important, but is very difficult due to the tiny SRAM size of MCU. Prior work proposes many algorithm-level techniques to reduce NN memory footprints, but all at the cost of sacrificing accuracy and generality, which disqualifies MCUs for many important use cases. We investigate a system solution for MCUs to execute NNs out of core: dynamically swapping NN data chunks between an MCU's tiny SRAM and its large, low-cost external flash. Out-of-core NNs on MCUs raise multiple concerns: execution slowdown, storage wear out, energy consumption, and data security. We present a study showing that none is a showstopper; the key benefit -- MCUs being able to run large NNs with full accuracy and generality -- triumphs the overheads. Our findings suggest that MCUs can play a much greater role in edge intelligence.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Hongyu Miao (12 papers)
  2. Felix Xiaozhu Lin (33 papers)
Citations (13)

Summary

We haven't generated a summary for this paper yet.