Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Regularization via deep generative models: an analysis point of view (2101.08661v1)

Published 21 Jan 2021 in cs.CV, cs.LG, and eess.IV

Abstract: This paper proposes a new way of regularizing an inverse problem in imaging (e.g., deblurring or inpainting) by means of a deep generative neural network. Compared to end-to-end models, such approaches seem particularly interesting since the same network can be used for many different problems and experimental conditions, as soon as the generative model is suited to the data. Previous works proposed to use a synthesis framework, where the estimation is performed on the latent vector, the solution being obtained afterwards via the decoder. Instead, we propose an analysis formulation where we directly optimize the image itself and penalize the latent vector. We illustrate the interest of such a formulation by running experiments of inpainting, deblurring and super-resolution. In many cases our technique achieves a clear improvement of the performance and seems to be more robust, in particular with respect to initialization.

Citations (8)

Summary

We haven't generated a summary for this paper yet.