Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Algebraic curves and foliations (2101.08627v1)

Published 21 Jan 2021 in math.AG, math.AC, and math.CV

Abstract: Consider a field $k$ of characteristic $0$, not necessarily algebraically closed, and a fixed algebraic curve $f=0$ defined by a tame polynomial $f\in k[x,y]$ with only quasi-homogeneous singularities. We prove that the space of holomorphic foliations in the plane ${mathbb A}2_\k$ having $f=0$ as a fixed invariant curve is generated as $k[x,y]$-module by at most four elements, three of them are the trivial foliations $fdx,fdy$ and $df$. Our proof is algorithmic and constructs the fourth foliation explicitly. Using Serre's GAGA and Quillen-Suslin theorem, we show that for a suitable field extension $K$ of $k$ such a module over $K[x,y]$ is actually generated by two elements, and therefore, such curves are free divisors in the sense of K. Saito. After performing Groebner basis for this module, we observe that in many well-known examples, $K=k$.

Summary

We haven't generated a summary for this paper yet.