Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Noisy-target Training: A Training Strategy for DNN-based Speech Enhancement without Clean Speech (2101.08625v2)

Published 21 Jan 2021 in eess.AS

Abstract: Deep neural network (DNN)-based speech enhancement ordinarily requires clean speech signals as the training target. However, collecting clean signals is very costly because they must be recorded in a studio. This requirement currently restricts the amount of training data for speech enhancement to less than 1/1000 of that of speech recognition which does not need clean signals. Increasing the amount of training data is important for improving the performance, and hence the requirement of clean signals should be relaxed. In this paper, we propose a training strategy that does not require clean signals. The proposed method only utilizes noisy signals for training, which enables us to use a variety of speech signals in the wild. Our experimental results showed that the proposed method can achieve the performance similar to that of a DNN trained with clean signals.

Citations (37)

Summary

We haven't generated a summary for this paper yet.