Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A constructive approach to one-dimensional Gorenstein $k$-algebras (2101.07559v1)

Published 19 Jan 2021 in math.AC and math.AG

Abstract: Let $R$ be the power series ring or the polynomial ring over a field $k$ and let $I $ be an ideal of $R.$ Macaulay proved that the Artinian Gorenstein $k$-algebras $R/I$ are in one-to-one correspondence with the cyclic $R$-submodules of the divided power series ring $\Gamma. $ The result is effective in the sense that any polynomial of degree $s$ produces an Artinian Gorenstein $k$-algebra of socle degree $s.$ In a paper, the authors extended Macaulay's correspondence characterizing the $R$-submodules of $\Gamma $ in one-to-one correspondence with Gorenstein d-dimensional $k$-algebras. However, these submodules in positive dimension are not finitely generated. Our goal is to give constructive and finite procedures for the construction of Gorenstein $k$-algebras of dimension one and any codimension. This has been achieved through a deep analysis of the $G$-admissible submodules of $\Gamma. $ Applications to the Gorenstein linkage of zero-dimensional schemes and to Gorenstein affine semigroup rings are discussed.

Summary

We haven't generated a summary for this paper yet.