Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Refined blowup analysis and nonexistence of Type II blowups for an energy critical nonlinear heat equation (2101.07186v1)

Published 18 Jan 2021 in math.AP and math.DG

Abstract: We consider the energy critical semilinear heat equation $$ \left{\begin{aligned} &\partial_t u-\Delta u =|u|{\frac{4}{n-2}}u &\mbox{in } {\mathbb R}n\times(0,T),\ &u(x,0)=u_0(x), \end{aligned}\right. $$ where $ n\geq 3$, $u_0\in L\infty({\mathbb R}n)$, and $T\in {\mathbb R}+$ is the first blow up time. We prove that if $ n \geq 7$ and $ u_0 \geq 0$, then any blowup must be of Type I, i.e., [|u(\cdot, t)|_{L\infty({\mathbb R}n)}\leq C(T-t){-\frac{1}{p-1}}.] A similar result holds for bounded convex domains. The proof relies on a reverse inner-outer gluing mechanism and delicate analysis of bubbling behavior (bubbling tower/cluster).

Summary

We haven't generated a summary for this paper yet.