Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
91 tokens/sec
GPT-4o
12 tokens/sec
Gemini 2.5 Pro Pro
o3 Pro
5 tokens/sec
GPT-4.1 Pro
15 tokens/sec
DeepSeek R1 via Azure Pro
33 tokens/sec
Gemini 2.5 Flash Deprecated
12 tokens/sec
2000 character limit reached

A simple geometric proof for the benefit of depth in ReLU networks (2101.07126v1)

Published 18 Jan 2021 in cs.LG

Abstract: We present a simple proof for the benefit of depth in multi-layer feedforward network with rectified activation ("depth separation"). Specifically we present a sequence of classification problems indexed by $m$ such that (a) for any fixed depth rectified network there exist an $m$ above which classifying problem $m$ correctly requires exponential number of parameters (in $m$); and (b) for any problem in the sequence, we present a concrete neural network with linear depth (in $m$) and small constant width ($\leq 4$) that classifies the problem with zero error. The constructive proof is based on geometric arguments and a space folding construction. While stronger bounds and results exist, our proof uses substantially simpler tools and techniques, and should be accessible to undergraduate students in computer science and people with similar backgrounds.

Citations (1)

Summary

We haven't generated a summary for this paper yet.

X Twitter Logo Streamline Icon: https://streamlinehq.com