2000 character limit reached
Quantum traces for $\mathrm{SL}_n(\mathbb{C})$: The case $n=3$ (2101.06817v4)
Published 18 Jan 2021 in math.GT and math.QA
Abstract: We generalize Bonahon-Wong's $\mathrm{SL}2(\mathbb{C})$-quantum trace map to the setting of $\mathrm{SL}_3(\mathbb{C})$. More precisely, given a non-zero complex parameter $q=e{2 \pi i \hbar}$, we associate to each isotopy class of framed oriented links $K$ in a thickened punctured surface $\mathfrak{S} \times (0, 1)$ a Laurent polynomial $\mathrm{Tr}\lambdaq(K) = \mathrm{Tr}_\lambdaq(K)(X_iq)$ in $q$-deformations $X_iq$ of the Fock-Goncharov $\mathcal{X}$-coordinates for higher Teichm\"{u}ller space. This construction depends on a choice $\lambda$ of ideal triangulation of the surface $\mathfrak{S}$. Along the way, we propose a definition for a $\mathrm{SL}_n(\mathbb{C})$-version of this invariant.