Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
133 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On Unimodality of Independence Polynomials of Trees (2101.06744v5)

Published 17 Jan 2021 in cs.DM and math.CO

Abstract: An independent set in a graph is a set of pairwise non-adjacent vertices. The independence number $\alpha{(G)}$ is the size of a maximum independent set in the graph $G$. The independence polynomial of a graph is the generating function for the sequence of numbers of independent sets of each size. In other words, the $k$-th coefficient of the independence polynomial equals the number of independent sets comprised of $k$ vertices. For instance, the degree of the independence polynomial of the graph $G$ is equal to $\alpha{(G)}$. In 1987, Alavi, Malde, Schwenk, and Erd{\"o}s conjectured that the independence polynomial of a tree is unimodal. In what follows, we provide support to this assertion considering trees with up to $20$ vertices. Moreover, we show that the corresponding independence polynomials are log-concave and, consequently, unimodal. The algorithm computing the independence polynomial of a given tree makes use of a database of non-isomorphic unlabeled trees to prevent repeated computations.

Citations (3)

Summary

We haven't generated a summary for this paper yet.