Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
144 tokens/sec
GPT-4o
8 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Modules induced from a normal subgroup of prime index (2101.06604v1)

Published 17 Jan 2021 in math.RT

Abstract: Let $G$ be a finite group and $H$ a normal subgroup of prime index $p$. Let $V$ be an irreducible ${\mathbb F}H$-module and $U$ a quotient of the induced ${\mathbb F}G$-module $V\kern-3pt\uparrow$. We describe the structure of $U$, which is semisimple when ${\rm char}({\mathbb F})\ne p$ and uniserial if ${\rm char}({\mathbb F})=p$. Furthermore, we describe the division rings arising as endomorphism algebras of the simple components of $U$. We use techniques from noncommutative ring theory to study ${\rm End}{{\mathbb F}G}(V\kern-3pt\uparrow)$ and relate the right ideal structure of ${\rm End}{{\mathbb F}G}(V\kern-3pt\uparrow)$ to the submodule structure of $V\kern-3pt\uparrow$.

Summary

We haven't generated a summary for this paper yet.