Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
167 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Simultaneous Embedding of Colored Graphs (2101.06596v1)

Published 17 Jan 2021 in cs.CG

Abstract: A set of colored graphs are compatible, if for every color $i$, the number of vertices of color $i$ is the same in every graph. A simultaneous embedding of $k$ compatibly colored graphs, each with $n$ vertices, consists of $k$ planar polyline drawings of these graphs such that the vertices of the same color are mapped to a common set of vertex locations. We prove that simultaneous embedding of $k\in o(\log \log n)$ colored planar graphs, each with $n$ vertices, can always be computed with a sublinear number of bends per edge. Specifically, we show an $O(\min{c, n{1-1/\gamma}})$ upper bound on the number of bends per edge, where $\gamma = 2{\lceil k/2 \rceil}$ and $c$ is the total number of colors. Our bound, which results from a better analysis of a previously known algorithm [Durocher and Mondal, SIAM J. Discrete Math., 32(4), 2018], improves the bound for $k$, as well as the bend complexity by a factor of $\sqrt{2}{k}$. The algorithm can be generalized to obtain small universal point sets for colored graphs. We prove that $n\lceil c/b \rceil$ vertex locations, where $b\ge 1$, suffice to embed any set of compatibly colored $n$-vertex planar graphs with bend complexity $O(b)$, where $c$ is the number of colors.

Summary

We haven't generated a summary for this paper yet.