Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

To Understand Representation of Layer-aware Sequence Encoders as Multi-order-graph (2101.06397v2)

Published 16 Jan 2021 in cs.CL

Abstract: In this paper, we propose an explanation of representation for self-attention network (SAN) based neural sequence encoders, which regards the information captured by the model and the encoding of the model as graph structure and the generation of these graph structures respectively. The proposed explanation applies to existing works on SAN-based models and can explain the relationship among the ability to capture the structural or linguistic information, depth of model, and length of sentence, and can also be extended to other models such as recurrent neural network based models. We also propose a revisited multigraph called Multi-order-Graph (MoG) based on our explanation to model the graph structures in the SAN-based model as subgraphs in MoG and convert the encoding of SAN-based model to the generation of MoG. Based on our explanation, we further introduce a Graph-Transformer by enhancing the ability to capture multiple subgraphs of different orders and focusing on subgraphs of high orders. Experimental results on multiple neural machine translation tasks show that the Graph-Transformer can yield effective performance improvement.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Sufeng Duan (13 papers)
  2. Hai Zhao (227 papers)

Summary

We haven't generated a summary for this paper yet.