Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Stable Mixed FE Method for Nearly Incompressible Linear Elastostatics (2101.06297v2)

Published 15 Jan 2021 in math.NA, cs.CE, and cs.NA

Abstract: We present a new, stable, mixed finite element (FE) method for linear elastostatics of nearly incompressible solids. The method is the automatic variationally stable FE (AVS-FE) method of Calo, Romkes and Valseth, in which we consider a Petrov-Galerkin weak formulation where the stress and displacement variables are in the space H(div)xH1, respectively. This allows us to employ a fully conforming FE discretization for any elastic solid using classical FE subspaces of H(div) and H1. Hence, the resulting FE approximation yields both continuous stresses and displacements. To ensure stability of the method, we employ the philosophy of the discontinuous Petrov-Galerkin (DPG) method of Demkowicz and Gopalakrishnan and use optimal test spaces. Thus, the resulting FE discretization is stable even as the Poisson ratio approaches 0.5, and the system of linear algebraic equations is symmetric and positive definite. Our method also comes with a built-in a posteriori error estimator as well as well as indicators which are used to drive mesh adaptive refinements. We present several numerical verifications of our method including comparisons to existing FE technologies.

Citations (2)

Summary

We haven't generated a summary for this paper yet.