Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximations with deep neural networks in Sobolev time-space (2101.06115v1)

Published 23 Dec 2020 in cs.LG and math.FA

Abstract: Solutions of evolution equation generally lies in certain Bochner-Sobolev spaces, in which the solution may has regularity and integrability properties for the time variable that can be different for the space variables. Therefore, in this paper, we develop a framework shows that deep neural networks can approximate Sobolev-regular functions with respect to Bochner-Sobolev spaces. In our work we use the so-called Rectified Cubic Unit (ReCU) as an activation function in our networks, which allows us to deduce approximation results of the neural networks while avoiding issues caused by the non regularity of the most commonly used Rectivied Linear Unit (ReLU) activation function.

Citations (11)

Summary

We haven't generated a summary for this paper yet.