Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Neural Network-derived perfusion maps: a Model-free approach to computed tomography perfusion in patients with acute ischemic stroke (2101.05992v1)

Published 15 Jan 2021 in eess.IV and cs.CV

Abstract: Purpose: In this study we investigate whether a Convolutional Neural Network (CNN) can generate clinically relevant parametric maps from CT perfusion data in a clinical setting of patients with acute ischemic stroke. Methods: Training of the CNN was done on a subset of 100 perfusion data, while 15 samples were used as validation. All the data used for the training/validation of the network and to generate ground truth (GT) maps, using a state-of-the-art deconvolution-algorithm, were previously pre-processed using a standard pipeline. Validation was carried out through manual segmentation of infarct core and penumbra on both CNN-derived maps and GT maps. Concordance among segmented lesions was assessed using the Dice and the Pearson correlation coefficients across lesion volumes. Results: Mean Dice scores from two different raters and the GT maps were > 0.70 (good-matching). Inter-rater concordance was also high and strong correlation was found between lesion volumes of CNN maps and GT maps (0.99, 0.98). Conclusion: Our CNN-based approach generated clinically relevant perfusion maps that are comparable to state-of-the-art perfusion analysis methods based on deconvolution of the data. Moreover, the proposed technique requires less information to estimate the ischemic core and thus might allow the development of novel perfusion protocols with lower radiation dose.

Citations (5)

Summary

We haven't generated a summary for this paper yet.