Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

SoftNER: Mining Knowledge Graphs From Cloud Incidents (2101.05961v2)

Published 15 Jan 2021 in cs.SE, cs.AI, cs.DC, and cs.LG

Abstract: The move from boxed products to services and the widespread adoption of cloud computing has had a huge impact on the software development life cycle and DevOps processes. Particularly, incident management has become critical for developing and operating large-scale services. Prior work on incident management has heavily focused on the challenges with incident triaging and de-duplication. In this work, we address the fundamental problem of structured knowledge extraction from service incidents. We have built SoftNER, a framework for mining Knowledge Graphs from incident reports. First, we build a novel multi-task learning based BiLSTM-CRF model which leverages not just the semantic context but also the data-types for extracting factual information in the form of named entities. Next, we present an approach to mine relations between the named entities for automatically constructing knowledge graphs. We have deployed SoftNER at Microsoft, a major cloud service provider and have evaluated it on more than 2 months of cloud incidents. We show that the unsupervised machine learning pipeline has a high precision of 0.96. Our multi-task learning based deep learning model also outperforms the state-of-the-art NER models. Lastly, using the knowledge extracted by SoftNER, we are able to build accurate models for applications such as incident triaging and recommending entities based on their relevance to incident titles.

Citations (11)

Summary

We haven't generated a summary for this paper yet.