Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
169 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Non-Parametric Quickest Detection of a Change in the Mean of an Observation Sequence (2101.05423v1)

Published 14 Jan 2021 in eess.SP

Abstract: We study the problem of quickest detection of a change in the mean of an observation sequence, under the assumption that both the pre- and post-change distributions have bounded support. We first study the case where the pre-change distribution is known, and then study the extension where only the mean and variance of the pre-change distribution are known. In both cases, no knowledge of the post-change distribution is assumed other than that it has bounded support. For the case where the pre-change distribution is known, we derive a test that asymptotically minimizes the worst-case detection delay over all post-change distributions, as the false alarm rate goes to zero. We then study the limiting form of the optimal test as the gap between the pre- and post-change means goes to zero, which we call the Mean-Change Test (MCT). We show that the MCT can be designed with only knowledge of the mean and variance of the pre-change distribution. We validate our analysis through numerical results for detecting a change in the mean of a beta distribution. We also demonstrate the use of the MCT for pandemic monitoring.

Summary

We haven't generated a summary for this paper yet.