Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Explainability of deep vision-based autonomous driving systems: Review and challenges (2101.05307v2)

Published 13 Jan 2021 in cs.CV, cs.AI, cs.LG, and cs.RO

Abstract: This survey reviews explainability methods for vision-based self-driving systems trained with behavior cloning. The concept of explainability has several facets and the need for explainability is strong in driving, a safety-critical application. Gathering contributions from several research fields, namely computer vision, deep learning, autonomous driving, explainable AI (X-AI), this survey tackles several points. First, it discusses definitions, context, and motivation for gaining more interpretability and explainability from self-driving systems, as well as the challenges that are specific to this application. Second, methods providing explanations to a black-box self-driving system in a post-hoc fashion are comprehensively organized and detailed. Third, approaches from the literature that aim at building more interpretable self-driving systems by design are presented and discussed in detail. Finally, remaining open-challenges and potential future research directions are identified and examined.

Citations (152)

Summary

We haven't generated a summary for this paper yet.