Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
41 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Is the User Enjoying the Conversation? A Case Study on the Impact on the Reward Function (2101.05004v1)

Published 13 Jan 2021 in cs.CL, cs.AI, and cs.HC

Abstract: The impact of user satisfaction in policy learning task-oriented dialogue systems has long been a subject of research interest. Most current models for estimating the user satisfaction either (i) treat out-of-context short-texts, such as product reviews, or (ii) rely on turn features instead of on distributed semantic representations. In this work we adopt deep neural networks that use distributed semantic representation learning for estimating the user satisfaction in conversations. We evaluate the impact of modelling context length in these networks. Moreover, we show that the proposed hierarchical network outperforms state-of-the-art quality estimators. Furthermore, we show that applying these networks to infer the reward function in a Partial Observable Markov Decision Process (POMDP) yields to a great improvement in the task success rate.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (1)
Citations (1)