Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
125 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An arbitrary-order discrete de Rham complex on polyhedral meshes: Exactness, Poincaré inequalities, and consistency (2101.04940v4)

Published 13 Jan 2021 in math.NA and cs.NA

Abstract: In this paper we present a novel arbitrary-order discrete de Rham (DDR) complex on general polyhedral meshes based on the decomposition of polynomial spaces into ranges of vector calculus operators and complements linked to the spaces in the Koszul complex. The DDR complex is fully discrete, meaning that both the spaces and discrete calculus operators are replaced by discrete counterparts, and satisfies suitable exactness properties depending on the topology of the domain. In conjunction with bespoke discrete counterparts of $L2$-products, it can be used to design schemes for partial differential equations that benefit from the exactness of the sequence but, unlike classical (e.g., Raviart--Thomas--N\'ed\'elec) finite elements, are nonconforming. We prove a complete panel of results for the analysis of such schemes: exactness properties, uniform Poincar\'e inequalities, as well as primal and adjoint consistency. We also show how this DDR complex enables the design of a numerical scheme for a magnetostatics problem, and use the aforementioned results to prove stability and optimal error estimates for this scheme.

Citations (32)

Summary

We haven't generated a summary for this paper yet.