Papers
Topics
Authors
Recent
2000 character limit reached

Mixup Without Hesitation

Published 12 Jan 2021 in cs.CV | (2101.04342v1)

Abstract: Mixup linearly interpolates pairs of examples to form new samples, which is easy to implement and has been shown to be effective in image classification tasks. However, there are two drawbacks in mixup: one is that more training epochs are needed to obtain a well-trained model; the other is that mixup requires tuning a hyper-parameter to gain appropriate capacity but that is a difficult task. In this paper, we find that mixup constantly explores the representation space, and inspired by the exploration-exploitation dilemma in reinforcement learning, we propose mixup Without hesitation (mWh), a concise, effective, and easy-to-use training algorithm. We show that mWh strikes a good balance between exploration and exploitation by gradually replacing mixup with basic data augmentation. It can achieve a strong baseline with less training time than original mixup and without searching for optimal hyper-parameter, i.e., mWh acts as mixup without hesitation. mWh can also transfer to CutMix, and gain consistent improvement on other machine learning and computer vision tasks such as object detection. Our code is open-source and available at https://github.com/yuhao318/mwh

Citations (20)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.