Unconditional convergence of the differences of Fejér kernels on $L^2(\mathbb{R})$ (2101.03910v6)
Abstract: Let $K_n(x)$ denote the Fej\'er kernel given by $$K_n(x)=\sum_{j=-n}n\left(1-\frac{|j|}{n+1}\right)e{-ijx}$$ and let $\sigma_nf(x)=(K_n\ast f)(x)$, where as usual $f\ast g$ denotes the convolution of $f$ and $g$. Let the sequence ${n_k}$ be lacunary. Then the series $$\mathcal{G}f(x)=\sum_{k=1}\infty \left(\sigma_{n_{k+1}}f(x)-\sigma_{n_k}f(x)\right)$$ converges unconditionally for all $f\in L2(\mathbb{R})$. Let $(n_k)$ be a lacunary sequence, and ${c_k}{k=1}\infty \in \ell\infty$. Define $$\mathcal{R}f(x)=\sum{k=1}\infty c_k\left(\sigma_{n_{k+1}}f(x)-\sigma_{n_k}f(x)\right).$$ Then there exists a constant $C>0$ such that $$|\mathcal{R}f|_2\leq C|f|_2$$ for all $f\in L2(\mathbb{R})$, i.e., $\mathcal{R}f$ is of strong type $(2,2)$. As a special case it follows that $\mathcal{G}f$ also is of strong type $(2,2)$.