Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Refined Notions of Parameterized Enumeration Kernels with Applications to Matching Cut Enumeration (2101.03800v1)

Published 11 Jan 2021 in cs.DS and cs.DM

Abstract: An enumeration kernel as defined by Creignou et al. [Theory Comput. Syst. 2017] for a parameterized enumeration problem consists of an algorithm that transforms each instance into one whose size is bounded by the parameter plus a solution-lifting algorithm that efficiently enumerates all solutions from the set of the solutions of the kernel. We propose to consider two new versions of enumeration kernels by asking that the solutions of the original instance can be enumerated in polynomial time or with polynomial delay from the kernel solutions. Using the NP-hard Matching Cut problem parameterized by structural parameters such as the vertex cover number or the cyclomatic number of the input graph, we show that the new enumeration kernels present a useful notion of data reduction for enumeration problems which allows to compactly represent the set of feasible solutions.

Citations (14)

Summary

We haven't generated a summary for this paper yet.