Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

A Two-Level Preconditioned Helmholtz-Jacobi-Davidson Method for the Maxwell Eigenvalue Problem (2101.03687v1)

Published 11 Jan 2021 in math.NA and cs.NA

Abstract: In this paper, based on a domain decomposition (DD) method, we shall propose an efficient two-level preconditioned Helmholtz-Jacobi-Davidson (PHJD) method for solving the algebraic eigenvalue problem resulting from the edge element approximation of the Maxwell eigenvalue problem. In order to eliminate the components in orthogonal complement space of the eigenvalue, we shall solve a parallel preconditioned system and a Helmholtz projection system together in fine space. After one coarse space correction in each iteration and minimizing the Rayleigh quotient in a small dimensional Davidson space, we finally get the error reduction of this two-level PHJD method as $\gamma=c(H)(1-C\frac{\delta{2}}{H{2}})$, where $C$ is a constant independent of the mesh size $h$ and the diameter of subdomains $H$, $\delta$ is the overlapping size among the subdomains, and $c(H)$ decreasing as $H\to 0$, which means the greater the number of subdomains, the better the convergence rate. Numerical results supporting our theory shall be given.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (2)
  1. Qigang Liang (4 papers)
  2. Xuejun Xu (28 papers)
Citations (7)

Summary

We haven't generated a summary for this paper yet.