Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
153 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the power of standard information for tractability for $L_2$-approximation in the randomized setting (2101.03665v1)

Published 11 Jan 2021 in math.NA and cs.NA

Abstract: We study approximation of multivariate functions from a separable Hilbert space in the randomized setting with the error measured in the weighted $L_2$ norm. We consider algorithms that use standard information $\Lambda{\rm std}$ consisting of function values or general linear information $\Lambda{\rm all}$ consisting of arbitrary linear functionals. We use the weighted least squares regression algorithm to obtain the upper estimates of the minimal randomized error using $\Lambda{\rm std}$. We investigate the equivalences of various notions of algebraic and exponential tractability for $\Lambda{\rm std}$ and $\Lambda{\rm all}$ for the normalized or absolute error criterion. We show that in the randomized setting for the normalized or absolute error criterion, the power of $\Lambda{\rm std}$ is the same as that of $\Lambda{\rm all}$ for all notions of exponential and algebraic tractability without any condition. Specifically, we solve four Open Problems 98, 100-102 as posed by E.Novak and H.Wo\'zniakowski in the book: Tractability of Multivariate Problems, Volume III: Standard Information for Operators, EMS Tracts in Mathematics, Z\"urich, 2012.

Citations (4)

Summary

We haven't generated a summary for this paper yet.