Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
166 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Target Detection and Segmentation in Circular-Scan Synthetic-Aperture-Sonar Images using Semi-Supervised Convolutional Encoder-Decoders (2101.03603v4)

Published 10 Jan 2021 in cs.CV and cs.AI

Abstract: We propose a framework for saliency-based, multi-target detection and segmentation of circular-scan, synthetic-aperture-sonar (CSAS) imagery. Our framework relies on a multi-branch, convolutional encoder-decoder network (MB-CEDN). The encoder portion of the MB-CEDN extracts visual contrast features from CSAS images. These features are fed into dual decoders that perform pixel-level segmentation to mask targets. Each decoder provides different perspectives as to what constitutes a salient target. These opinions are aggregated and cascaded into a deep-parsing network to refine the segmentation. We evaluate our framework using real-world CSAS imagery consisting of five broad target classes. We compare against existing approaches from the computer-vision literature. We show that our framework outperforms supervised, deep-saliency networks designed for natural imagery. It greatly outperforms unsupervised saliency approaches developed for natural imagery. This illustrates that natural-image-based models may need to be altered to be effective for this imaging-sonar modality.

Citations (13)

Summary

We haven't generated a summary for this paper yet.