2000 character limit reached
Tail inequalities for restricted classes of discrete random variables (2101.03452v1)
Published 10 Jan 2021 in math.PR
Abstract: Let $X$ be an integrable discrete random variable over ${0, 1, 2, \ldots}$ with $\mathbb{P}(X = i + 1) \leq \mathbb{P}(X = i)$ for all $i$. Then for any integer $a \geq 1$, $\mathbb{P}(X \leq a) \leq \mathbb{E}[X] / (2a - 1)$. Let $W$ be an discrete random variable over ${\ldots, -2, -1, 0, 1, 2, \ldots}$ with finite second moment where the $\mathbb{P}(W = i)$ values are unimodal. Then $\mathbb{P}(|W - \mathbb{E}[W]| \geq a) \leq (\mathbb{V}(W) + 1 / 12) / (2(a - 1 / 2)2)$.