Papers
Topics
Authors
Recent
Search
2000 character limit reached

How much we gain by surplus-dependent premiums -- asymptotic analysis of ruin probability

Published 9 Jan 2021 in math.PR | (2101.03335v1)

Abstract: In this paper, we build on the techniques developed in Albrecher et al. (2013), to generate initial-boundary value problems for ruin probabilities of surplus-dependent premium risk processes, under a renewal case scenario, Erlang (2) claim arrivals, and an exponential claims scenario, Erlang (2) claim sizes. Applying the approximation theory of solutions of linear ordinary differential equations developed in Fedoryuk (1993), we derive the asymptotics of the ruin probabilities when the initial reserve tends to infinity. When considering premiums that are {\it linearly} dependent on reserves, representing for instance returns on risk-free investments of the insurance capital, we firstly derive explicit formulas for the ruin probabilities, from which we can easily determine their asymptotics, only to match the ones obtained for general premiums dependent on reserves. We compare them with the asymptotics of the equivalent ruin probabilities when the premium rate is fixed over time, to measure the gain generated by this additional mechanism of binding the premium rates with the amount of reserve own by the insurance company.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.