Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Approximation of wave packets on the real line (2101.02566v2)

Published 7 Jan 2021 in math.NA and cs.NA

Abstract: In this paper we compare three different orthogonal systems in $\mathrm{L}_2(\mathbb{R})$ which can be used in the construction of a spectral method for solving the semi-classically scaled time dependent Schr\"odinger equation on the real line, specifically, stretched Fourier functions, Hermite functions and Malmquist--Takenaka functions. All three have banded skew-Hermitian differentiation matrices, which greatly simplifies their implementation in a spectral method, while ensuring that the numerical solution is unitary -- this is essential in order to respect the Born interpretation in quantum mechanics and, as a byproduct, ensures numerical stability with respect to the $\mathrm{L}_2(\mathbb{R})$ norm. We derive asymptotic approximations of the coefficients for a wave packet in each of these bases, which are extremely accurate in the high frequency regime. We show that the Malmquist--Takenaka basis is superior, in a practical sense, to the more commonly used Hermite functions and stretched Fourier expansions for approximating wave packets

Citations (7)

Summary

We haven't generated a summary for this paper yet.