Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
38 tokens/sec
GPT-4o
59 tokens/sec
Gemini 2.5 Pro Pro
41 tokens/sec
o3 Pro
7 tokens/sec
GPT-4.1 Pro
50 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Few-Shot Learning with Class Imbalance (2101.02523v2)

Published 7 Jan 2021 in cs.LG and cs.CV

Abstract: Few-Shot Learning (FSL) algorithms are commonly trained through Meta-Learning (ML), which exposes models to batches of tasks sampled from a meta-dataset to mimic tasks seen during evaluation. However, the standard training procedures overlook the real-world dynamics where classes commonly occur at different frequencies. While it is generally understood that class imbalance harms the performance of supervised methods, limited research examines the impact of imbalance on the FSL evaluation task. Our analysis compares 10 state-of-the-art meta-learning and FSL methods on different imbalance distributions and rebalancing techniques. Our results reveal that 1) some FSL methods display a natural disposition against imbalance while most other approaches produce a performance drop by up to 17\% compared to the balanced task without the appropriate mitigation; 2) contrary to popular belief, many meta-learning algorithms will not automatically learn to balance from exposure to imbalanced training tasks; 3) classical rebalancing strategies, such as random oversampling, can still be very effective, leading to state-of-the-art performances and should not be overlooked; 4) FSL methods are more robust against meta-dataset imbalance than imbalance at the task-level with a similar imbalance ratio ($\rho<20$), with the effect holding even in long-tail datasets under a larger imbalance ($\rho=65$).

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (5)
  1. Jose Vazquez (6 papers)
  2. Mateusz Ochal (6 papers)
  3. Massimiliano Patacchiola (16 papers)
  4. Amos Storkey (75 papers)
  5. Sen Wang (164 papers)
Citations (28)