Papers
Topics
Authors
Recent
Search
2000 character limit reached

Adaptive Group Testing on Networks with Community Structure: The Stochastic Block Model

Published 7 Jan 2021 in cs.SI and stat.ME | (2101.02405v4)

Abstract: Group testing was conceived during World War II to identify soldiers infected with syphilis using as few tests as possible, and it has attracted renewed interest during the COVID-19 pandemic. A long-standing assumption in the probabilistic variant of the group testing problem is that individuals are infected by the disease independently. However, this assumption rarely holds in practice, as diseases often spread through interactions between individuals and therefore cause infections to be correlated. Inspired by characteristics of COVID-19 and other infectious diseases, we introduce an infection model over networks which generalizes the traditional i.i.d. model from probabilistic group testing. Under this model, we ask whether knowledge of the network structure can be leveraged to perform group testing more efficiently, focusing specifically on community-structured graphs drawn from the stochastic block model. We prove that a simple community-aware algorithm outperforms the baseline binary splitting algorithm when the model parameters are conducive to "strong community structure." Moreover, our novel lower bounds imply that the community-aware algorithm is order-optimal in certain parameter regimes. We extend our bounds to the noisy setting and support our results with numerical experiments.

Citations (7)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (3)

Collections

Sign up for free to add this paper to one or more collections.