Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
184 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Understanding the Error in Evaluating Adversarial Robustness (2101.02325v1)

Published 7 Jan 2021 in cs.CR

Abstract: Deep neural networks are easily misled by adversarial examples. Although lots of defense methods are proposed, many of them are demonstrated to lose effectiveness when against properly performed adaptive attacks. How to evaluate the adversarial robustness effectively is important for the realistic deployment of deep models, but yet still unclear. To provide a reasonable solution, one of the primary things is to understand the error (or gap) between the true adversarial robustness and the evaluated one, what is it and why it exists. Several works are done in this paper to make it clear. Firstly, we introduce an interesting phenomenon named gradient traps, which lead to incompetent adversaries and are demonstrated to be a manifestation of evaluation error. Then, we analyze the error and identify that there are three components. Each of them is caused by a specific compromise. Moreover, based on the above analysis, we present our evaluation suggestions. Experiments on adversarial training and its variations indicate that: (1) the error does exist empirically, and (2) these defenses are still vulnerable. We hope these analyses and results will help the community to develop more powerful defenses.

Citations (4)

Summary

We haven't generated a summary for this paper yet.