Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
156 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

On the Computational Complexity of the Secure State-Reconstruction Problem (2101.01827v2)

Published 6 Jan 2021 in eess.SY, cs.SY, and math.OC

Abstract: In this paper, we discuss the computational complexity of reconstructing the state of a linear system from sensor measurements that have been corrupted by an adversary. The first result establishes that the problem is, in general, NP-hard. We then introduce the notion of eigenvalue observability and show that the state can be reconstructed in polynomial time when each eigenvalue is observable by at least $2s+1$ sensors and at most $s$ sensors are corrupted by an adversary. However, there is a gap between eigenvalue observability and the possibility of reconstructing the state despite attacks - this gap has been characterized in the literature by the notion of sparse observability. To better understand this, we show that when the $\mathbf{A}$ matrix of the linear system has unitary geometric multiplicity, the gap disappears, i.e., eigenvalue observability coincides with sparse observability, and there exists a polynomial time algorithm to reconstruct the state provided the state can be reconstructed.

Citations (16)

Summary

We haven't generated a summary for this paper yet.