Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
129 tokens/sec
GPT-4o
28 tokens/sec
Gemini 2.5 Pro Pro
42 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Community Preserved Social Graph Publishing with Node Differential Privacy (2101.01450v1)

Published 5 Jan 2021 in cs.CR

Abstract: The goal of privacy-preserving social graph publishing is to protect individual privacy while preserving data utility. Community structure, which is an important global pattern of nodes, is a crucial data utility as it serves as fundamental operations for many graph analysis tasks. Yet, most existing methods with differential privacy (DP) commonly fall in edge-DP to sacrifice security in exchange for utility. Moreover, they reconstruct graphs from the local feature-extraction of nodes, resulting in poor community preservation. Motivated by this, we propose PrivCom, a strict node-DP graph publishing algorithm to maximize the utility on the community structure while maintaining a higher level of privacy. Specifically, to reduce the huge sensitivity, we devise a Katz index-based private graph feature extraction method, which can capture global graph structure features while greatly reducing the global sensitivity via a sensitivity regulation strategy. Yet, with a fixed sensitivity, the feature captured by Katz index, which is presented in matrix form, requires privacy budget splits. As a result, plenty of noise is injected, thereby mitigating global structural utility. To this end, we design a private Oja algorithm approximating eigen-decomposition, which yields the noisy Katz matrix via privately estimating eigenvectors and eigenvalues from extracted low-dimensional vectors. Experimental results confirm our theoretical findings and the efficacy of PrivCom.

Citations (14)

Summary

We haven't generated a summary for this paper yet.