Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

An Integrated Optimization Framework for Multi-Component Predictive Analytics in Wind Farm Operations & Maintenance (2101.01084v1)

Published 4 Jan 2021 in eess.SY and cs.SY

Abstract: Recent years have seen an unprecedented growth in the use of sensor data to guide wind farm operations and maintenance. Emerging sensor-driven approaches typically focus on optimal maintenance procedures for single turbine systems, or model multiple turbines in wind farms as single component entities. In reality, turbines are composed of multiple components that dynamically interact throughout their lifetime. These interactions are central for realistic assessment and control of turbine failure risks. In this paper, an integrated framework that combines i) real-time degradation models used for predicting remaining life distribution of each component, with ii) mixed integer optimization models and solution algorithms used for identifying optimal wind farm maintenance and operations is proposed. Maintenance decisions identify optimal times to repair every component, which in turn, determine the failure risk of the turbines. More specifically, optimization models that characterize a turbine's failure time as the first time that one of its constituent components fail - a systems reliability concept called competing risk is developed. The resulting turbine failures impact the optimization of wind farm operations and revenue. Extensive experiments conducted for multiple wind farms with 300 wind turbines - 1200 components - showcases the performance of the proposed framework over conventional methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Ilke Bakir (2 papers)
  2. Murat Yildirim (19 papers)
  3. Evrim Ursavas (12 papers)
Citations (30)

Summary

We haven't generated a summary for this paper yet.