Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
119 tokens/sec
GPT-4o
56 tokens/sec
Gemini 2.5 Pro Pro
43 tokens/sec
o3 Pro
6 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Coreference Resolution: Are the eliminated spans totally worthless? (2101.00737v3)

Published 4 Jan 2021 in cs.CL and cs.AI

Abstract: Various neural-based methods have been proposed so far for joint mention detection and coreference resolution. However, existing works on coreference resolution are mainly dependent on filtered mention representation, while other spans are largely neglected. In this paper, we aim at increasing the utilization rate of data and investigating whether those eliminated spans are totally useless, or to what extent they can improve the performance of coreference resolution. To achieve this, we propose a mention representation refining strategy where spans highly related to mentions are well leveraged using a pointer network for representation enhancing. Notably, we utilize an additional loss term in this work to encourage the diversity between entity clusters. Experimental results on the document-level CoNLL-2012 Shared Task English dataset show that eliminated spans are indeed much effective and our approach can achieve competitive results when compared with previous state-of-the-art in coreference resolution.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (3)
  1. Xin Tan (63 papers)
  2. Longyin Zhang (5 papers)
  3. Guodong Zhou (62 papers)

Summary

We haven't generated a summary for this paper yet.