Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
139 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Automatic Defect Detection of Print Fabric Using Convolutional Neural Network (2101.00703v1)

Published 3 Jan 2021 in cs.CV and cs.LG

Abstract: Automatic defect detection is a challenging task because of the variability in texture and type of fabric defects. An effective defect detection system enables manufacturers to improve the quality of processes and products. Automation across the textile manufacturing systems would reduce fabric wastage and increase profitability by saving cost and resources. There are different contemporary research on automatic defect detection systems using image processing and machine learning techniques. These techniques differ from each other based on the manufacturing processes and defect types. Researchers have also been able to establish real-time defect detection system during weaving. Although, there has been research on patterned fabric defect detection, these defects are related to weaving faults such as holes, and warp and weft defects. But, there has not been any research that is designed to detect defects that arise during such as spot and print mismatch. This research has fulfilled this gap by developing a print fabric database and implementing deep convolutional neural network (CNN).

Citations (6)

Summary

We haven't generated a summary for this paper yet.