Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
120 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Cutoff phenomenon for the warp-transpose top with random shuffle (2101.00533v4)

Published 3 Jan 2021 in math.PR

Abstract: Let ${G_n}_1{\infty}$ be a sequence of non-trivial finite groups. In this paper, we study the properties of a random walk on the complete monomial group $G_n\wr S_n$ generated by the elements of the form $(\text{e},\dots,\text{e},g;\text{id})$ and $(\text{e},\dots,\text{e},g{-1},\text{e},\dots,\text{e},g;(i,n))$ for $g\in G_n,\;1\leq i< n$. We call this the warp-transpose top with random shuffle on $G_n\wr S_n$. We find the spectrum of the transition probability matrix for this shuffle. We prove that the mixing time for this shuffle is $O\left(n\log n+\frac{1}{2}n\log (|G_n|-1)\right)$. We show that this shuffle exhibits $\ell2$-cutoff at $n\log n+\frac{1}{2}n\log (|G_n|-1)$ and total variation cutoff at $n\log n$.

Summary

We haven't generated a summary for this paper yet.