Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
194 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Locally conservative immersed finite element method for elliptic interface problems (2101.00241v1)

Published 1 Jan 2021 in math.NA and cs.NA

Abstract: In this paper, we introduce the locally conservative enriched immersed finite element method (EIFEM) to tackle the elliptic problem with interface. The immersed finite element is useful for handling interface with mesh unfit with the interface. However, all the currently available method under IFEM framework may not be designed to consider the flux conservation. We provide an efficient and effective remedy for this issue by introducing a local piecewise constant enrichment, which provides the locally conservative flux. We have also constructed and analyzed an auxiliary space preconditioner for the resulting system based on the application of algebraic multigrid method. The new observation in this work is that by imposing strong Dirichlet boundary condition for the standard IFEM part of EIFEM, we are able to remove the zero eigen-mode of the EIFEM system while still imposing the Dirichlet boundary condition weakly assigned to the piecewise constant enrichment part of EIFEM. A couple of issues relevant to the piecewise constant enrichment given for the mesh unfit to the interface has been discussed and clarified as well. Numerical tests are provided to confirm the theoretical development.

Citations (5)

Summary

We haven't generated a summary for this paper yet.