Papers
Topics
Authors
Recent
Search
2000 character limit reached

Bayesian Graph Neural Network for Fast identification of critical nodes in Uncertain Complex Networks

Published 26 Dec 2020 in cs.SI and cs.LG | (2012.15733v2)

Abstract: In the quest to improve efficiency, interdependence and complexity are becoming defining characteristics of modern complex networks representing engineered and natural systems. Graph theory is a widely used framework for modeling such complex networks and to evaluate their robustness to disruptions. Particularly, identification of critical nodes/links in a graph can facilitate the enhancement of graph (system) robustness and characterize crucial factors of system performance. Most existing methods of critical node identification are based on an iterative approach that explores each node/link of a graph. These methods suffer from high computational complexity and the resulting analysis is network specific. Additionally, uncertainty associated with the underlying graphical model further limits the potential value of these traditional approaches. To overcome these challenges, we propose a Bayesian graph neural network based node classification framework that is computationally efficient and systematically incorporates uncertainties. Instead of utilizing the observed graph for training the model, a MAP estimate of the graph is computed based on the observed topology and node target labels. Further, a Monte-Carlo (MC) dropout algorithm is incorporated to account for the epistemic uncertainty. The fidelity and the gain in computational complexity offered by the Bayesian framework is illustrated using simulation results.

Citations (3)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.