Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
158 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
45 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Gradient Descent Averaging and Primal-dual Averaging for Strongly Convex Optimization (2012.14558v2)

Published 29 Dec 2020 in cs.LG and math.OC

Abstract: Averaging scheme has attracted extensive attention in deep learning as well as traditional machine learning. It achieves theoretically optimal convergence and also improves the empirical model performance. However, there is still a lack of sufficient convergence analysis for strongly convex optimization. Typically, the convergence about the last iterate of gradient descent methods, which is referred to as individual convergence, fails to attain its optimality due to the existence of logarithmic factor. In order to remove this factor, we first develop gradient descent averaging (GDA), which is a general projection-based dual averaging algorithm in the strongly convex setting. We further present primal-dual averaging for strongly convex cases (SC-PDA), where primal and dual averaging schemes are simultaneously utilized. We prove that GDA yields the optimal convergence rate in terms of output averaging, while SC-PDA derives the optimal individual convergence. Several experiments on SVMs and deep learning models validate the correctness of theoretical analysis and effectiveness of algorithms.

Citations (4)

Summary

We haven't generated a summary for this paper yet.