Papers
Topics
Authors
Recent
2000 character limit reached

Fast Subgraph Matching by Exploiting Search Failures

Published 28 Dec 2020 in cs.DB | (2012.14420v1)

Abstract: Subgraph matching is a compute-intensive problem that asks to enumerate all the isomorphic embeddings of a query graph within a data graph. This problem is generally solved with backtracking, which recursively evolves every possible partial embedding until it becomes an isomorphic embedding or is found unable to become it. While existing methods reduce the search space by analyzing graph structures before starting the backtracking, it is often ineffective for complex graphs. In this paper, we propose an efficient algorithm for subgraph matching that performs on-the-fly pruning during the backtracking. Our main idea is to `learn from failure'. That is, our algorithm generates failure patterns when a partial embedding is found unable to become an isomorphic embedding. Then, in the subsequent process of the backtracking, our algorithm prunes partial embeddings matched with a failure pattern. This pruning does not change the result because failure patterns are designed to represent the conditions that never yield an isomorphic embedding. Additionally, we introduce an efficient representation of failure patterns for constant-time pattern matching. The experimental results show that our method improves the performance by up to 10000 times than existing methods.

Citations (1)

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.