Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
97 tokens/sec
GPT-4o
53 tokens/sec
Gemini 2.5 Pro Pro
44 tokens/sec
o3 Pro
5 tokens/sec
GPT-4.1 Pro
47 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Fast Subgraph Matching by Exploiting Search Failures (2012.14420v1)

Published 28 Dec 2020 in cs.DB

Abstract: Subgraph matching is a compute-intensive problem that asks to enumerate all the isomorphic embeddings of a query graph within a data graph. This problem is generally solved with backtracking, which recursively evolves every possible partial embedding until it becomes an isomorphic embedding or is found unable to become it. While existing methods reduce the search space by analyzing graph structures before starting the backtracking, it is often ineffective for complex graphs. In this paper, we propose an efficient algorithm for subgraph matching that performs on-the-fly pruning during the backtracking. Our main idea is to `learn from failure'. That is, our algorithm generates failure patterns when a partial embedding is found unable to become an isomorphic embedding. Then, in the subsequent process of the backtracking, our algorithm prunes partial embeddings matched with a failure pattern. This pruning does not change the result because failure patterns are designed to represent the conditions that never yield an isomorphic embedding. Additionally, we introduce an efficient representation of failure patterns for constant-time pattern matching. The experimental results show that our method improves the performance by up to 10000 times than existing methods.

User Edit Pencil Streamline Icon: https://streamlinehq.com
Authors (4)
  1. Junya Arai (2 papers)
  2. Makoto Onizuka (37 papers)
  3. Yasuhiro Fujiwara (17 papers)
  4. Sotetsu Iwamura (2 papers)
Citations (1)

Summary

We haven't generated a summary for this paper yet.