Papers
Topics
Authors
Recent
Gemini 2.5 Flash
Gemini 2.5 Flash
143 tokens/sec
GPT-4o
7 tokens/sec
Gemini 2.5 Pro Pro
46 tokens/sec
o3 Pro
4 tokens/sec
GPT-4.1 Pro
38 tokens/sec
DeepSeek R1 via Azure Pro
28 tokens/sec
2000 character limit reached

Semi-classical limit of an inverse problem for the Schrödinger equation (2012.13833v2)

Published 26 Dec 2020 in math-ph, cs.NA, math.MP, and math.NA

Abstract: It is a classical derivation that the Wigner equation, derived from the Schr\"odinger equation that contains the quantum information, converges to the Liouville equation when the rescaled Planck constant $\epsilon\to0$. Since the latter presents the Newton's second law, the process is typically termed the (semi-)classical limit. In this paper, we study the classical limit of an inverse problem for the Schr\"odinger equation. More specifically, we show that using the initial condition and final state of the Schr\"odinger equation to reconstruct the potential term, in the classical regime with $\epsilon\to0$, becomes using the initial and final state to reconstruct the potential term in the Liouville equation. This formally bridges an inverse problem in quantum mechanics with an inverse problem in classical mechanics.

Citations (3)

Summary

We haven't generated a summary for this paper yet.